An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus.
نویسندگان
چکیده
In Streptomyces coelicolor A3(2), a protein serine/threonine kinase (AfsK) and its target protein (AfsR) control secondary metabolism. AfsK and AfsR homologues (AfsK-g and AfsR-g) from Streptomyces griseus showed high end-to-end similarity in amino acid sequence with the respective S. coelicolor A3(2) proteins, as determined by cloning and nucleotide sequencing. AfsK-g and a fusion protein between AfsK-g and thioredoxin (TRX-AfsK-g) produced in high yield as inclusion bodies in Escherichia coli were solubilized with urea, purified by column chromatography and then refolded to an active form by dialysis to gradually remove the urea. AfsR-g was also fused to glutathione S-transferase (GST-AfsR-g); the fusion product in the soluble fraction in E. coli was purified. Incubation of AfsK-g or TRX-AfsK-g in the presence of [gamma-32P]ATP yielded autophosphorylated products containing phosphoserine and phosphothreonine residues. In addition, TRX-AfsK-g phosphorylated serine and threonine residues of GST-AfsR-g in the presence of [gamma-32P]ATP. Disruption of chromosomal afsK-g had no effect on A-factor or streptomycin production, irrespective of the culture conditions. The afsK-g disruptants did not form aerial mycelium or spores on media containing glucose at concentrations higher than 1%, but did form spores on mannitol- and glycerol-containing media; this suggests that afsK-g is essential for morphogenesis in the presence of glucose. Introduction of afsK-g restored aerial mycelium formation in the disruptants. The phenotype of afsR-g disruptants was similar to that of afsK-g disruptants; introduction of afsR-g restored the defect in aerial mycelium formation on glucose-containing medium. Thus the AfsK/AfsR system in S. griseus is conditionally needed for morphological differentiation, whereas in S. coelicolor A3(2) it is conditionally involved in secondary metabolism.
منابع مشابه
Deprogrammed sporulation in Streptomyces.
The bacterial genus Streptomyces forms chains of spores by septation at intervals in aerial hyphae and subsequent maturation on solid medium. Substrate hyphae undergo extensive lysis, liberating nutrients on which aerial hyphae develop. Some mutant strains, however, ectopically form spores by septation in substrate hyphae on solid medium or in vegetative hyphae in liquid medium, which suggests ...
متن کاملAutophosphorylation of a bacterial serine/threonine kinase, AfsK, is inhibited by KbpA, an AfsK-binding protein.
A protein serine/threonine kinase, AfsK, and its target protein AfsR globally control physiological and morphological differentiation in the bacterial genus Streptomyces. A protein (KbpA) of 252 amino acids encoded by an open reading frame in a region upstream of afsK in Streptomyces coelicolor A3(2) was identified as an AfsK-interacting protein. The interaction site of AfsK was in the N-termin...
متن کاملAmfS, an extracellular peptidic morphogen in Streptomyces griseus.
The amf gene cluster was previously identified as a regulator for the onset of aerial-mycelium formation in Streptomyces griseus. The nucleotide sequences of amf and its counterparts in other species revealed a conserved gene organization consisting of five open reading frames. A nonsense mutation in amfS, encoding a 43-amino-acid peptide, caused significant blocking of aerial-mycelium formatio...
متن کاملControl by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus.
In Streptomyces griseus, A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) switches on aerial mycelium formation and secondary metabolite biosynthesis. An A-factor-dependent transcriptional activator, AdpA, activates multiple genes required for morphological development and secondary metabolism in a programmed manner. A region upstream of a zinc-containing metalloendopeptidase gene...
متن کاملControl of the Streptomyces Subtilisin inhibitor gene by AdpA in the A-factor regulatory cascade in Streptomyces griseus.
AdpA in the A-factor regulatory cascade in Streptomyces griseus activates a number of genes required for secondary metabolism and morphological differentiation, forming an AdpA regulon. The Streptomyces subtilisin inhibitor (SSI) gene, sgiA, in S. griseus was transcribed in response to AdpA, showing that sgiA is a member of the AdpA regulon. AdpA bound a single site upstream of the sgiA promote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiology
دوره 145 ( Pt 9) شماره
صفحات -
تاریخ انتشار 1999